Chiral extrapolation of lattice QCD results

Ross Young CSSM, University of Adelaide

MENU 2010, May 31–June 4 2010 College of William & Mary Williamsburg, VA, USA

Nucleon couples strongly to pions in QCD

• Goldberger-Treiman relation [1958]: In the chiral limit

$$g_{\pi NN} = \frac{g_A M_N}{f_\pi}$$

• Accurate to ~3% at physical point

 $g_{\pi NN} \sim 13.3$

$$\frac{g_A M_N}{f_\pi} \sim 12.9$$

GMOR: $m_{\pi}^2 \propto m_q$

Nucleon couples strongly to pions in QCD

• Goldberger-Treiman relation [1958]: In the chiral limit

$$g_{\pi NN} = \frac{g_A M_N}{f_\pi}$$

• Accurate to ~3% at physical point

$$g_{\pi NN} \sim 13.3$$

$$\frac{g_A M_N}{f_\pi} \sim 12.9$$

Field-theoretic consequences for nucleon structure

GMOR: $m_{\pi}^2 \propto m_q$

Nucleon couples strongly to pions in QCD

• Goldberger-Treiman relation [1958]: In the chiral limit

$$g_{\pi NN} = \frac{g_A M_N}{f_\pi}$$

• Accurate to ~3% at physical point

$$g_{\pi NN} \sim 13.3$$

$$\frac{g_A M_N}{f_\pi} \sim 12.9$$

GMOR:

N

 $m_{\pi}^2 \propto m_q$

Field-theoretic consequences for nucleon structure π

Nucleon properties exhibit nonanalytic expansion about chiral limit

eg.
$$M_N^{LNA} \sim -\frac{3}{32\pi} \frac{g_A^2}{f_\pi^2} m_\pi^3$$

Lattice QCD: Entering the chiral regime

"Chiral" fit

Expectation of QCD

$$M_N^{LNA} \sim -\frac{3}{32\pi} \frac{g_A^2}{f_\pi^2} m_\pi^3 \sim (-5.6 \,\mathrm{GeV}^{-2}) m_\pi^3$$
$$\left(\frac{M_N}{M_\Xi}\right)^{LNA} \sim (-5.4 \,\mathrm{GeV}^{-2}) m_\pi^3$$

• Lightest cut on lattice results

 $\alpha'_N \sim -4.5(3.2)(0.5) \,\mathrm{GeV}^{-2}$

"Chiral" fit

Lightest cut on lattice results

 $\alpha'_N \sim -4.5(3.2)(0.5) \,\mathrm{GeV}^{-2}$

Statistical challenges

Statistical challenges

Chiral effective field theory offers a method to dramatically reduce statistical uncertainties

Can correlate seemingly uncorrelated observables

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

SU(3) symmetry: related by just 2 parameters

Coleman & Glashow, PRL(1961)

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

SU(3) symmetry: related by just 2 parameters

Leading nonanalytic chiral corrections lessen agreement with experiment

Coleman & Glashow, PRL(1961)

Caldi & Pagels, PRD(1974)

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

SU(3) symmetry: related by just 2 parameters

Leading nonanalytic chiral corrections lessen agreement with experiment

Covariant IR formalism: no improvement

Coleman & Glashow, PRL(1961)

Caldi & Pagels, PRD(1974)

Kubis & Meissner, EPJC(2001)

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

SU(3) symmetry: related by just 2 parameters

Leading nonanalytic chiral corrections lessen agreement with experiment

Covariant IR formalism: no improvement

Long distance regularisation: *perturbative* loop corrections

Coleman & Glashow, PRL(1961)

Caldi & Pagels, PRD(1974)

Kubis & Meissner, EPJC(2001)

Donoghue et al., PRD(1999)

- I heard that the SU(3) chiral expansion is **bad** for baryons...
- Consider octet baryon magnetic moments

SU(3) symmetry: related by just 2 parameters

Leading nonanalytic chiral corrections lessen agreement with experiment

Covariant IR formalism: no improvement

Long distance regularisation: *perturbative* loop corrections

Extended-on-mass-shell (EOMS): improved expansion

Coleman & Glashow, PRL(1961)

Caldi & Pagels, PRD(1974)

Kubis & Meissner, EPJC(2001)

Donoghue et al., PRD(1999)

Geng *et al.*, PRL(2008)

One loop correction

SU(3) for lattice QCD

• Fits to octet and decuplet baryon masses in EOMS

	(GMO	HB	Covariant
$\chi^2_{ m d.o.f.}$		0.60	9.3	2.2
$ar{\chi}^2_{ m d.o.f.}$	w/expt.	4.3	36.4	2.8

Martin-Camalich et al., arXiv:1003.1929

Finite-range regularisation (FRR)

RDY & Thomas, PRD(2010)

PACS-CS fits

PACS-CS: 2+1-flavour simulation; different action discretization to LHPC

Correction in strange quark mass demonstrated to be reliable against numerical simulation

As for LHPC, excellent agreement with observed spectrum

PACS-CS have an additional run with a different strange quark mass

RDY & Thomas, PRD(2010)

"Predict" PACS-CS from LHPC

Discretization errors appear at 1–2% level

Strange-quark mass dependence

 Strange quark "extrapolation" at physical pion mass

Quantifying uncertainties

Nucleon Mass (GeV)DiscretisationLHPC 0.945 ± 0.029 PACS-CS 0.954 ± 0.042

Extrapolated baryon masses and fit parameters (LECs) in agreement

RegulatorDipole0.9410Sharp0.9452

Small dependence on choice of regulator — similarly for other functional forms (monopole, Gaussian)

Source	MeV		
Statistical	23.6		
Discretisation	4.2		
Model	3.1		
Regulator	2.1		
f_{π} (5%)	0.7		
F (15%)	1.3		
D (15%)	1.3		
C (15%)	0.9		
Δ_{10-8} (15%)	0.4		

$\bar{\sigma}_{Bq} = \frac{m_q}{M_B} \frac{\partial M_B}{\partial m_q}$

Baryon Sigma Terms

	N	Λ	\sum	[I]
$ar{\sigma}_{Bl}$	0.050(9)(1)(3)	0.028(4)(1)(2)	0.0212(27)(1)(17)	0.0100(10)(0)(4)
$ar{\sigma}_{Bs}$	0.033(16)(4)(2)	0.144(15)(10)(2)	0.187(15)(3)(4)	0.244(15)(12)(2)

πN Sigma Term (Expt):GL: Gasser & Leutwyler (1991)GW: Pavan et al. (2001)

Octet Masses & Breaking: Gasser (1981) NK: Nelson & Kaplan (1987) BM: Borasoy & Meissner (1997)

3-flavour Lattice QCD: YT: Young & Thomas (2009) TF: Toussaint & Freeman (2009)

We determine precisely *both* the light and strange quark sigma terms

Spin-independent neutralino cross sections

- Ellis, Olive & Savage, PRD(2008)
 - * Constrained Minimal Supersymmetric Standard Model (CMSSM)
 - * Neutralino as dark matter candidate
 - * Scalar contact interaction

Uncertainty dominated by knowledge of light-quark sigma terms

Updated cross sections for benchmark models

Ellis, Olive & Savage

Strong dependence on sigma term from poorly known strangeness

Giedt, Thomas & RDY, PRL(2009)

Tremendous advance in precision from new lattice QCD results

Nuclear physics & lattice QCD can help discriminate supersymmetry scenarios

Remarks

- Lattice calculations are reaching the physical pion mass as we speak
- Remains a strong need for chiral approaches to extract the most physics
- Expansions should not be limited by the worst way of formulating
- SU(3) can be used effectively for baryons